导航

离子交换原理-离子交换原理,离子,交换,原理

发布日期:2022-12-18 13:46:15

离子交换原理

离子交换的基本原理 离子交换的选择性定义为离子交换剂对于某些离子显示优先活性的性质。离子交换树脂吸附各种离子的能力不一,有些离子易被交换树脂吸附,但吸着后要把它置换下来就比较困难;而另一些离子很难被吸着,但被置换下来却比较容易,这种性能称为离子交换的选择性。离子交换树脂对水中不同离子的选择性与树脂的交联度、交换基团、可交换离子的性质、水中离子的浓度和水的温度等因素有关。离子交换作用即溶液中的可交换离子与交换基团上的可交换离子发生交换。一般来说,离子交换树脂对价数较高的离子的选择性较大。对于同价离子,则对离子半径较小的离子的选择性较大。在同族同价的金属离子中,原子序数较大的离子其水合半径较小,阳离子交换树脂对其的选择性较大。对于丙烯酸系弱酸性阳离子交换树脂来说,它对一些离子的选择性顺序为:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 离子交换反应是可逆反应,但是这种可逆反应并不是在均相溶液中进行的,而是在固态的树脂和溶液的接触界面间发生的。这种反应的可逆性使离子交换树脂可以反复使用。以D113型离子交换树脂制备硫酸钙晶须为例说明: D113丙烯酸系弱酸性阳离子交换树脂是一种大孔型离子交换树脂,其内部的网状结构中有无数四通八达的孔道,孔道里面充满了水分子,在孔道的一定部位上分布着可提供交换离子的交换基团。当硫酸锌溶液中的Zn2+,S042-扩散到树脂的孔道中时,由于该树脂对Zn2+选择性强于对Ca2+的选择性,,所以Zn2+就与树脂孔道中的交换基团Ca2+发生快速的交换反应,被交换下来的Ca2+遇到扩散进入孔道的S042-发生沉淀反应,生成硫酸钙沉淀。其过程大致为: (1)边界水膜内的扩散 水中的Zn2+,S042-离子向树脂颗粒表面迁移,并扩散通过树脂表面的边界水膜层,到达树脂表面; (2)交联网孔内的扩散(或称孔道扩散) Zn2+,S042-离子进入树脂颗粒内部的交联网孔,并进行扩散,到达交换点; (3)离子交换 Zn2+与树脂基团上的可交换的Ca2+进行交换反应; (4)交联网孔内的扩散 被交换下来的Ca2+在树脂内部交联网孔中向树脂表面扩散;部分交换下来的Ca2+在扩散过程中遇到由外部扩散进入孔径的S042-发生沉淀反应,生成CaS04沉淀; (5)边界水膜内的扩散 没有发生沉淀反应的部分Ca2+扩散通过树脂颗粒表面的边界水膜层,并进入水溶液中。 此外,由于离子交换以及沉淀反应的速度很快,硫酸钙沉淀基本在树脂的孔道里生成,因此树脂的孔道就限制了沉淀的生长及形貌,对其具有一定的规整作用。通过调整搅拌速度、反应温度等外界条件,可以使树脂颗粒及其内部孔道发生相应的变化,这样当沉淀在树脂孔道中生成后,就得到了不同尺寸和形貌的硫酸钙沉淀。


离子交换分离法的原理是什么?

离子交换是用一种称为离子交换树脂的物质来进行的。离子交换树脂遇水溶液时,能够从水溶液中吸着某种(类)离子,而把本身所具有的另外一种相同电荷符号的离子等摩尔量地交换到溶液中去,这种现象称为离子交换。 希望有用


离子交换法的原理

吸附(adsorption)溶液中的离子与树脂上官能团发生反应,并结合到树脂上的过程。淋洗(elution)用一定浓度的淋洗剂将已吸附在离子交换树脂上的金属由树脂转移到水溶液中的过程,又称解吸。转型(transformation)将树脂从一种型式转变为其他离子型式的过程。离子交换树脂(ion exchange resin)一种带有官能团(有交换离子的活性基团)、具有网状结构与不溶性的高分子聚合物。通常是球形颗粒物。饱和树脂(loadedresin)在某一特定条件下,当吸附尾液中被吸附离子的浓度与进料液中浓度相等或达到动态平衡时的离子交换树脂。离子交换法是以圆球形树脂(离子交换树脂)过滤原水,水中的离子会与固定在树脂上的离子交换。常见的两种离子交换方法分别是硬水软化和去离子法。硬水软化主要是用在反渗透(RO)处理之前,先将水质硬度降低的一种前处理程序。软化机里面的球状树脂,以两个钠离子交换一个钙离子或镁离子的方式来软化水质。离子交换树脂利用氢离子交换阳离子,而以氢氧根离子交换阴离子;以包含磺酸根的苯乙烯和二乙烯苯制成的阳离子交换树脂会以氢离子交换碰到的各种阳离子(例如Na+、Ca2+、Al3+)。同样的,以包含季铵盐的苯乙烯制成的阴离子交换树脂会以氢氧根离子交换碰到的各种阴离子(如Cl-)。从阳离子交换树脂释出的氢离子与从阴离子交换树脂释出的氢氧根离子相结合后生成纯水。阴阳离子交换树脂可被分别包装在不同的离子交换床中,分成所谓的阴离子交换床和阳离子交换床。也可以将阳离子交换树脂与阴离子交换树脂混在一起,置于同一个离子交换床中。不论是哪一种形式,当树脂与水中带电荷的杂质交换完树脂上的氢离子及(或)氢氧根离子,就必须进行“再生”。再生的程序恰与纯化的程序相反,利用氢离子及氢氧根离子进行再生,交换附着在离子交换树脂上的杂质。

离子交换分离法的原理是什么?

离子交换是用一种称为离子交换树脂的物质来进行的。离子交换树脂遇水溶液时,能够从水溶液中吸着某种(类)离子,而把本身所具有的另外一种相同电荷符号的离子等摩尔量地交换到溶液中去,这种现象称为离子交换。
希望有用


阳离子交换树脂的工作原理是怎么样的?

阳离子交换树脂吸附交换原理 强酸性阳离子树脂 这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。这两个反应使树脂中的H+与溶液中的阳离子互相交换。强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。 树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。 弱酸性阳离子树脂 这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+ 而呈酸性。树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。 其实阳离子交换树脂在我们实际使用过程中,一般都是将树脂变味其他离子形式进行运行,以满足各种场景使用需求。例如经常会将强酸性的阳离子交换树脂和NaCl一起转变为钠型的树脂后再投入使用,当树脂置换过程中就会放出Na+与溶液中的Ca2+、Mg2+等阳离子交换吸附,除去这些离子。反应时没有放出H+,可避免溶液pH下降和由此产生的副作用(如蔗糖转化和设备腐蚀等)。 而且这类树脂以钠型状态运行使用后,可直接用盐水对树脂进行再生(不用强酸)。

离子交换树脂系统的工作原理

采用离子交换方法,可以把水中呈离子态的阳离子、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:1、阳离子交换树脂:R—H + Na+= R—Na + H+2、阴离子交换树脂:R—OH + Cl-= R—Cl + OH-阳、阴离子交换树脂总的反应式即可写成: RH+ROH+NaCl——RNa+RCl+H2O由此可看出,水中的NaCl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。

离子交换树脂的原理及应用是什么

原理
离子交换树脂是一种聚合物,带有相应的功能基团。一般情况下,常规的钠离子交换树脂带有大量的钠离子。当水中的钙镁离子含量高时,离子交换树脂可以释放出钠离子,功能基团与钙镁离子结合,这样水中的钙镁离子含量降低,水的硬度下降。硬水就变为软水,这是软化水设备的工作过程。
当树脂上的大量功能基团与钙镁离子结合后,树脂的软化能力下降,可以用氯化钠溶液流过树脂,此时溶液中的钠离子含量高,功能基团会释放出钙镁离子而与钠离子结合,这样树脂就恢复了交换能力,这个过程叫作“再生”。
由于实际工作的需要, 软化水设备的标准工作流程主要包括:工作(有时叫做产水,下同)、反洗、吸盐(再生)、慢冲洗(置换)、快冲洗五个过程。不同软化水设备的所有工序非常接近,只是由于实际工艺的不同或控制的需要,可能会有一些附加的流程。任何以钠离子交换为基础的软化水设备都是在这五个流程的基础上发展来的(其中,全自动软化水设备会增加盐水重注过程)。

反洗:工作一段时间后的设备,会在树脂上部拦截很多由原水带来的污物,把这些污物除去后,离子交换树脂才能完全曝露出来,再生的效果才能得到保证。反洗过程就是水从树脂的底部洗入,从顶部流出,这样可以把顶部拦截下来的污物冲走。这个过程一般需要5-15分钟左右。

吸盐(再生):即将盐水注入树脂罐体的过程,传统设备是采用盐泵将盐水注入,全自动的设备是采用专用的内置喷射器将盐水吸入(只要进水有一定的压力即可)。在实际工作过程中,盐水以较慢的速度流过树脂的再生效果比单纯用盐水浸泡树脂的效果好,所以软化水设备都是采用盐水慢速流过树脂的方法再生,这个过程一般需要30分钟左右,实际时间受用盐量的影响。

慢冲洗(置换):在用盐水流过树脂以后,用原水以同样的流速慢慢将树脂中的盐全部冲洗干净的过程叫慢冲洗,由于这个冲洗过程中仍有大量的功能基团上的钙镁离子被钠离子交换,根据实际经验,这个过程中是再生的主要过程,所以很多人将这个过程称作置换。这个过程一般与吸盐的时间相同,即30分钟左右。

快冲洗:为了将残留的盐彻底冲洗干净,要采用与实际工作接近的流速,用原水对树脂进行冲洗,这个过程的最后出水应为达标的软水。一般情况下,快冲洗过程为5-15分钟。
应用
1)水处理
水处理领域离子交换树脂的需求量很大,约占离子交换树脂产量的90%,用于水中的各种阴阳离子的去除。目前,离子交换树脂的最大消耗量是用在火力发电厂的纯水处理上,其次是原子能、半导体、电子工业等。

2)食品工业
离子交换树脂可用于制糖、味精、酒的精制、生物制品等工业装置上。例如:高果糖浆的制造是由玉米中萃出淀粉后,再经水解反应,产生葡萄糖与果糖,而后经离子交换处理,可以生成高果糖浆。离子交换树脂在食品工业中的消耗量仅次于水处理。

3)制药行业
制药工业离子交换树脂对发展新一代的抗菌素及对原有抗菌素的质量改良具有重要作用。链霉素的开发成功即是突出的例子。近年还在中药提成等方面有所研究。

4)合成化学和石油化学工业
在有机合成中常用酸和碱作催化剂进行酯化、水解、酯交换、水合等反应。用离子交换树脂代替无机酸、碱,同样可进行上述反应,且优点更多。如树脂可反复使用,产品容易分离,反应器不会被腐蚀,不污染环境,反应容易控制等。
甲基叔丁基醚(MTBE)的制备,就是用大孔型离子交换树脂作催化剂,由异丁烯与甲醇反应而成,代替了原有的可对环境造成严重污染的四乙基铅。

5)环境保护
离子交换树脂已应用在许多非常受关注的环境保护问题上。目前,许多水溶液或非水溶液中含有有毒离子或非离子物质,这些可用树脂进行回收使用。如去除电镀废液中的金属离子,回收电影制片废液里的有用物质等。

6)湿法冶金及其他
离子交换树脂可以从贫铀矿里分离、浓缩、提纯铀及提取稀土元素和贵金属。



其他补充:
离子交换技术有相当长的历史,某些天然物质如泡沸石和用煤经过磺化制得的磺化煤都可用作离子交换剂。但是,随着现代有机合成工业技术的迅速发展,研究制成了许多种性能优良的离子交换树脂,并开发了多种新的应用方法,离子交换技术迅速发展,在许多行业特别是高新科技产业和科研领域中广泛应用。近年国内外生产的树脂品种达数百种,年产量数十万吨。
在工业应用中,离子交换树脂的优点主要是处理能力大,脱色范围广,脱色容量高,能除去各种不同的离子,可以反复再生使用,工作寿命长,运行费用较低(虽然一次投入费用较大)。以离子交换树脂为基础的多种新技术,如色谱分离法、离子排斥法、电渗析法等,各具独特的功能,可以进行各种特殊的工作,是其他方法难以做到的。离子交换技术的开发和应用还在迅速发展之中。
离子交换树脂的应用,是近年国内外制糖工业的一个重点研究课题,是糖业现代化的重要标志。膜分离技术在糖业的应用也受到广泛的研究。

离子交换树脂都是用有机合成方法制成。常用的原料为苯乙烯或丙烯酸(酯),通过聚合反应生成具有三维空间立体网络结构的骨架,再在骨架上导入不同类型的化学活性基团(通常为酸性或碱性基团)而制成。
离子交换树脂不溶于水和一般溶剂。大多数制成颗粒状,也有一些制成纤维状或粉状。树脂颗粒的尺寸一般在0.3~1.2mm 范围内,大部分在0.4~0.6mm之间。它们有较高的机械强度(坚牢性),化学性质也很稳定,在正常情况下有较长的使用寿命。
离子交换树脂中含有一种(或几种)化学活性基团,它即是交换官能团,在水溶液中能离解出某些阳离子(如H+或Na+)或阴离子(如OH-或Cl-),同时吸附溶液中原来存有的其他阳离子或阴离子。即树脂中的离子与溶液中的离子互相交换,从而将溶液中的离子分离出来。

离子交换树脂的品种很多,因化学组成和结构不同而具有不同的功能和特性,适应于不同的用途。应用树脂要根据工艺要求和物料的性质选用适当的类型和品种。


离子交换器的工作原理

工作原理就是离子的交换。运行时:阳树脂(H-R)+(M+)-->:(M-R)+(H+)阴树脂(OH-R)+(X-)-->:(X-R)+(OH-)其中M+为金属离子,X-为阴离子。再生过程为其逆过程。离子交换器的失效控制离子交换除盐水处理最简单的流程为 阳床-阴床 组成的一级复床除盐系统。有的一级复床除盐系统采用单元制,即每套一级复床除盐系统包括 阳床、(除碳器)、阴床各一台,在离子交换除盐运行过程中,无论是阳床还是阴床先失效,都是同时再生;还有的一级复床除盐系统采用母管制,即阳床与阳床或阴床与阴床是并联运行的,哪一台交换器失效就再生哪一台。1 检测和控制原理强酸性阳树脂对水中各种阳离子的吸附顺序为:Fe3+>Al3+>Ca2+>Mg2+>Na+>H+. ;由此可知,水中金属离子Na+被吸附的能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,H+.最后被其他阳离子置换下来,当保护层穿透时,首先泄漏的是最下层的Na+;因此监督阳离子交换器失效是以漏钠为标准的;其反应方程为(A代表金属阳离子,R为树脂基团):An+ +nRH=RnA+n H+HCO3- + H+ =H2O+CO2↑强碱性阴树脂对水中各种阴离子的吸附顺序为:SO42->NO3->Cl->OH->HCO3->HSiO3- 。由此可知,HSiO3-的吸附能力最弱,所以当离子交换时树脂层的各种离子吸附层逐渐下移,OH-.被其他阴离子置换下来,当保护层穿透时,首先泄漏的是最下层的HSiO3-;因此监督阴离子交换器失效是以漏硅为标准的;其反应方程为(B代表酸根阴离子,R为树脂基团):Bm- +mROH=RmB+mOH-2 控制点和控制方法由于母管制系统包含了单元制系统,而且它具有能充分使用树脂、提高交换器的出水能力、降低酸碱消耗等优点,我们在研究中主要讨论以这种结构为基础的离子交换除盐水处理系统。以成都生物制品研究所蛋白分离车间纯水站为例,该系统为母管制水处理系统,系统的结构为:砂滤-活性炭过滤-粗滤-阳床- 一阴-二阴-混床-精滤-纯水罐,系统产水能力为5 t/h,在系统的失效控制研究中,我们提出单元失效控制概念,也就是充分利用了母管制制水系统的优点对系统进行失效控制。(1)RO对各有机溶质的去除率大于NF膜。(2)不同有机溶质的去除率不相同,有的甚至相差很大(例如,RO和NF膜对乙酸的吸光度去除率分别为95.34%、81.45%,而对苯胺的吸光度去除率则分别为61.50%、46.82%)。3 出水水质原水经一级复床除盐后,电导率(25℃)低于10μS/cm,水中硅含量低于100μg/L。

离子交换原理

借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的单元操作。离子交换是可逆的等当量交换反应。


离子交换设备的工作原理?

  离子交换系统是通过阴阳离子树脂对水中的阴阳离子进行置换的处理工艺,离子交换设备中的阴阳离子交换树脂按照不同的比例进行搭配,组成离子交换阳床系统、离子交换阴床系统和离子混床系统三种。混床系统是在反渗透处理工艺后用来制取超纯水。离子交换设备采用离子交换方法,把水中的阴阳离子清除,用氯化钠代表水中无机盐类,水质除盐的基本反应方程式如下:

  阳离子交换树脂:R—H+Na+ R—Na+H+

  阴离子交换树脂:R—OH+Cl- R—Cl+OH-

  阳、阴离子交换树脂总的反应式为:

  RH+ROH+NaCl——RNa+RCL+H2O

  从而看出,水中的氯化钠已分别被树脂上的氢离子和氢氧根离子所取代,生成水,达到清除水中盐的作用。


糖液离子交换的原理是什么啊

浓差+阴阳离子交换


离子交换有那些用处?怎么样做?原理。

以离子交换剂上的可交换离子与液相中离子间发生交换为基础的分离方法。广泛采用人工合成的离子交换树脂作为离子交换剂,它是具有网状结构和可电离的活性基团的难溶性高分子电解质。根据树脂骨架上的活性基团的不同,可分为阳离子交换树脂、阴离子交换树脂、两性离子交换树脂、螯合树脂和氧化还原树脂等。用于离子交换分离的树脂要求具有不溶性、一定的交联度和溶胀作用,而且交换容量和稳定性要高。

离子交换分离广泛用于:①水的软化、高纯水的制备、环境废水的净化。②溶液和物质的纯化,如铀的提取和纯化。③金属离子的分离、痕量离子的富集及干扰离子的除去。④抗菌素的提取和纯化等。

====鄙人愿意给您提供生物学权威的解答,保证回答正确率在99.99%以上,您的选择是对我最大的动力,谢谢!====


海水淡化离子交换法原理?谢谢

海水的淡化原理是怎样的?最好的海水淡化方法该是哪一种?

离子交换层析法原理是什么

离子交换层析法 (ion exchange chromatography,简称IEC)是从复杂的混合物中,分离性质相似大分子的方法之一,依据的原理是物质的酸碱性、极性,也就是所带阴阳离子的不同。电荷不同的物质,对管柱上的离子交换剂有不同的亲和力,改变冲洗液的离子强度和pH值,物质就能依次从层析柱中分离出来。
离子交换层析法大致分为5个步骤:
1. 离子扩散到树脂表面。
2. 离子通过树脂扩散到交换位置。
3. 在交换位置进行离子交换;被交换的分子所带电荷愈多,它与树脂的结合愈紧密,也就愈不容易被其它离子取代。
4. 被交换的离子扩散到树脂表面。
5. 冲洗液通过,被交换的离子扩散到外部溶液中。
离子交换树脂的交换反应是可逆的,遵循化学平衡的规律,定量的混合物通过管柱时,离子不断被交换,浓度逐渐降低,几乎全部都能被吸附在树脂上;在冲洗的过程中,由于连续添加新的交换溶液,所以会朝正反应方向移动,因而可以把树脂上的离子冲洗下来。
如果被纯化的物质是氨基酸类的分子,则分子上的净电荷取决于氨基酸的等电点和溶液的pH值,所以当溶液的pH 值较低,氨基酸分子带正电荷,它将结合到强酸性的阳离子交换树脂上;随着通过的缓冲液pH逐渐增加,氨基酸将逐渐失去正电荷,结合力减弱,最后被洗下来。由于不同的氨基酸等电点不同,这些氨基酸将依次被洗出,最先被洗出的是酸性氨基酸,如apartic acid和glutamic acid(在约pH3~4时),随后是中性氨基酸,如glycine和alanine。碱性氨基酸如arginine和lysine在pH值很高的缓冲液中仍带有正电荷,因此这些在约pH值高达10~11时才出现。


离子交换层析技术的主要原理是

正确答案:C
解析:离子交换层析技术主要原理是纤维素或凝胶介质带电荷不同


凝胶过滤层析和离子交换层析分离蛋白质的原理有何不同?

所有的层析在原理上都是相通的,区别在于流动相和层析剂之间的作用力的不同.
离子交换是利用蛋白质表面的电荷与层析剂上的离子基团的静电作用.
凝胶过滤层析利用了凝胶的多孔性,根据溶剂分子的大小进行分离.


离子交换层析中流出物质顺序是什么?

离子交换层析中流出物质顺序是什么?

若用离子交换层析分离物质,以蛋白质为例,离子交换层析中,基质是由带有电荷的树脂或纤维素组成。带有正电荷的称之阴离子交换树脂;而带有负电荷的称之阳离子树脂。离子交换层析同样可以用于蛋白质的分离纯化。 由于蛋白质也有等电点,当蛋白质处于不同的pH条件下,其带电状况也不同。阴离子交换基质结合带有负电荷的蛋白质,所以这类蛋白质被留在柱子上,然后通过提高洗脱液中的盐浓度等措施,将吸附在柱子上的蛋白质洗脱下来。结合较弱的蛋白质首先被洗脱下来。 反之阳离子交换基质结合带有正电荷的蛋白质,结合的蛋白可以通过逐步增加洗脱液中的盐浓度或是提高洗脱液的pH值洗脱下来。 扩展资料: 对于离子交换纤维素要用流水洗去少量碎的不易沉淀的颗粒,以保证有较好的均匀度,对于已溶胀好的产品则不必经这一步骤。 溶胀的交换剂使用前要用稀酸或稀碱处理,使之成为带H+或OH-的交换剂型。阴离子交换剂常用“碱-酸-碱”处理,使最终转为-OH-型或盐型交换剂;对于阳离子交换剂则用“酸-碱-酸”处理,使最终转为-H-型交换剂。 梯度不要上升太快,要恰好使移动的区带在快到柱末端时达到解吸状态。目的物的过早解吸,会引起区带扩散;而目的物的过晚解吸会使峰形过宽。 参考资料来源:百度百科——离子交换层析

微生物发酵产物离子交换提取法原理

90、稳态:神经系统、体液和免疫系统调节下,内环境的相对稳定
温度、pH、渗透压,水、无机盐、血糖等化学物质含量
血浆 7.35—7.45 缓冲对 NaHCO3/H2CO3 Na2HPO4/NaH2PO4
2/3细胞内液 组织液

91、65%体液 1/3细胞外液 血浆 淋巴
(内环境) 不是血液 血液>血浆>血清
食物 排尿
92、体内水来源 饮水 水排出途径 出汗 皮肤
代谢水(有氧呼吸)面虫、骆驼 呼气 肺
(氨基酸脱水缩合) 排遗 消化道
93、K不吃也排 不经过出汗排
肾上腺分泌醛固酮(固醇) 保Na排K
高温工作、重体力劳动、呕吐、腹泻→→应特别注意补充足够的水、Na(食盐)
细胞外液渗透压下降,出现四肢发冷、血压下降、心率加快
K对细胞内液细胞渗透压起决定作用,维持心肌紧张、心肌正常兴奋性 K心
94、血糖三来源(食物、分解、转化) 三去向
糖的主要功能:供能
胰岛素 唯一降血糖激素;增加糖的去路,减少糖的来源 胰高血糖素、 肾上腺素 升血糖
胰高血糖素促进胰岛素分泌,胰岛素却抑制胰高血糖素分泌
血 糖 升 高
↓ ↑ ↑
下丘脑某区域→胰岛B细胞 胰高血糖素↑ 肾上腺素↑
↓ ↑ ↑
胰岛素↑ 胰岛A细胞 肾上腺髓质
↓ ↑ ↑ 下丘脑另一区域
血 糖 降 低
130高 >160-180糖尿
一次性摄糖过多,暂时尿糖 持续糖尿不一定糖尿病,如肾炎重吸收不行
糖尿病 血糖高且有糖尿 验尿验血 三多一少症状?
不吃少吃多吃含膳食纤维多的粗粮和蔬菜
95、营养物质:
蛋白质不足:婴幼儿、儿童、少年生长发育迟缓、体重过轻 成年人浮肿
提供能量
营养物质功能 提供构建和修复机体组织的物质
提供调节机体生理功能的物质
维生素:维持机体新陈代谢、某些特殊生理功能

VA:夜盲症
维生素 VB:脚气病
VC:坏血病
VD:佝偻病、骨软化病、骨质疏松症
96、温度感受器分为冷觉感受器和温觉感受器(分布皮肤、粘膜、内脏器官)
体温来自代谢释放热量(不是ATP提供),体温恒定是产热量,散热量动态平衡结果
寒冷 炎热
↓ ↓
皮肤冷觉感受器 温觉感受器 血管
↓传入神经 ↓ 立毛肌
下丘脑体温调节中枢 下丘脑 骨骼肌
传出神经 ↓ 汗
皮肤血管收缩 骨骼肌战粟(产能特多) 血管舒张
皮肤立毛肌收缩 皮肤立毛肌收缩 汗液分泌增多
↓鸡皮疙瘩 肾上腺素↑
缩小汗毛孔 甲状泉激素↑
减少散热 增加产热 散热量增加 不能减少产热
调节水分、血糖、体温
97、下丘脑 分泌激素:促激素释放激素 抗利尿激素
感受刺激:下丘脑渗透压感受器
传导兴奋:产生渴觉
第一道防线:皮肤、粘膜等
非特异性免疫(先天免疫)第二道防线:体液中杀菌物质、吞噬细胞
98、免疫 特异性免疫(获得性免疫) 第三道防线:体液免疫和细胞免疫
在特异性免疫中发挥免疫作用的主要是淋巴细胞
淋巴细胞的起源和分化:胸腺—T 骨髓—B
免疫细胞:B、T
免疫系统的物质基础 免疫器官:扁桃体、淋巴结、脾
免疫物质:抗体、淋巴因子(白介素、干扰素)
99、抗原特点:①一般异物性 但也有例外:如癌细胞、损伤或衰老的细胞
②大分子性
③特异性 抗原决定簇(病毒的衣壳)
100、体液免疫: 记忆细胞
↓ ↓再次受相同抗原刺激
抗原→→吞噬细胞→→T细胞→→B细胞→→→效应B细胞→→→抗体
↑ (摄取处理) (呈递) (识别)
感应阶段 反应阶段 效应阶段
效应B细胞产生:抗体(免疫球蛋白)、抗毒素、凝集素
效应T细胞产生:淋巴因子、干扰素、白细胞介素
识别抗原:B细胞、效应T细胞、记忆B/T
效应B细胞获得有三途径(直接、间接、记忆)
记忆细胞受相同抗原再次刺激后引起的二次免疫反应:更迅速、更强
再次接受过敏原(概念)
过敏反应 抗体分布 细胞表面
组织胺:体液调节
101、免疫失调引起的疾病 自身免疫疾病:风湿…类风湿…系统性红斑狼疮
先天性:先天性胸腺发育不全
免疫缺陷病 获得性:艾滋病、肺炎、气管炎
(人类免疫缺陷病毒) HIV↓攻击T细胞
(AIDS) 获得性免疫缺陷综合症
102、色素吸收、传递、转换光能 色素不能储存光能
蛋白质、氨基酸也不能储存
少数特殊状态叶绿素a 最终电子供体:水
高能量、易失电子 光能→ 电能 最终电子受体:NADP+
103、C4植物:玉米、高梁、甘庶、苋菜
既C3又C4 CO2固定能力强 先CO2+C3→C4
C3、C4叶肉细胞都含正常叶绿体
选修 C3维管束鞘细胞无叶绿体
图 C4维管束鞘细胞含无基粒的叶绿体 不进行光反应
(P29) C4植物花环型结构 里圈:维管束鞘细胞 外圈:部分叶肉细胞
降低呼吸消耗 增加净光合量
104、提高产量 延长光合作用时间 光:光质、强度、长短
提高农作物对 增大光合作用面积 温度:影响酶的活性
光能利用率 提高光合作用效率 水
矿质元素 N、P、K、Mg
CO2 农家肥、CO2发生器
105、生物固氮:N2 → NH3
根瘤菌的特异性:蚕豆根瘤菌侵入蚕豆、菜豆、豇豆;大豆根瘤菌侵入大豆。
N素
根瘤菌 有机物 豆科植物 异养需氧
共生固氮菌 根瘤 薄壁细胞 愈伤组织
固氮菌 自生≠自养 根瘤菌拌种 豆科植物绿肥
自生固氮菌:圆褐固氮菌(固氮+激素)
生物固氮(主:根瘤菌) 工业固氮 高能固氮
106、N循环 硝化、反硝化、氨化作用
反硝化:氧气不足NO3-→N2
自生固氮菌的分离原理:无氮培养基对固氮菌的选择生长
物质基础:线粒体、叶绿体中的DNA(质基因)
…线粒体
107、细胞质遗传 典型代表 …叶绿体 花斑植株→三种
特点 母系遗传(受精卵中的细胞质几乎全来自卵细胞)
后代性状不出现一定分离比
(形成配子时,质基因不均等分配)
编码区:编码蛋白质 连续的
原核细胞 非编码区 编码区上游:RNA聚合酶结合位点
基因结构 调控 编码区下游
108、基因的结构 真核细胞 非编码区
基因结构 编码区 内含子:非编码序列
外显子:能编码蛋白质内含子>外显子
原核基因无外显子内含子之说
主要分布于微生物
剪刀:限制性内切酶 特异性(专一性)
(200多种) 获得粘性末端
109、基因的操作工具 针线:DNA连接酶:扶手(磷酸二脂键)不是踏板(氢键)
条件①复制保存②多切点③标记基因
种类:质粒、病毒
运输工具:运载体 ①染色体外小型环状DNA
②存在于细菌、酵母菌
质粒特点 ③质粒是常用的运载体
④最常用:大肠杆菌
⑤对宿主细胞的生存无
基因工程 (基因拼接技术、DNA重组技术、转基因技术) 决定性作用
直接分离 常用鸟枪法
提取目的基因 人工合成(反转录法、根据已知AA序列合成DNA)
目的基因与运载体结合 同一种限制酶
110、基因操作步骤 将目的基因导入受体细胞→细菌、酵母菌、动植物
CaCl2处理细胞壁 ( 受精卵好 繁殖速度快)
目的基因的检测和表达:标记基因、目的基因是否表达?
逆转录 碱基互补配对
mRNA 单链DNA 双链DNA
推测 推测 合成
氨基酸序列 mRNA序列 DNA碱基序列 目的基因
药(胰岛素、干扰素、白细胞介素、乙肝疫苗)
111、基因工程的成果 治病:基因诊断与基因治疗(基因替换)
新品种(转基因) 食品工业(食物)
环境监测(DNA分子杂交 探针)
生物固氮、基因诊断、基因治疗、单细胞蛋白(微生物菌体本身)、
单克隆抗体、生物导弹(单抗+抗癌药物)
112、 间接联系 核心 核膜
高尔基体 内质网 细胞膜
线粒体膜
间接(具膜小泡) (内吞外排说明双向)
分泌蛋白:抗体、蛋白质类激素、胞外酶(消化酶)等分泌到细胞外
粗面内质网上的核糖体 内质网运输加工 高尔基体加工 成熟蛋白质 胞外
113、生物膜系统(不等于生物膜):细胞膜、核膜及由膜围绕而成的细胞器
离体→营养物质+激素 适宜温度+无菌
植物组织培养 离体→愈伤组织→根芽(胚状体)→植物体
选无病毒 尖(生长点) 紫草素
114、植物细胞工程 两种不同→杂种细胞→新植物体
植物体细胞 去掉细胞壁→原生质体→杂种细胞→新植物体
杂交 种间存在生殖隔离 不能有性杂交
好处:克服远源杂交不亲和障碍 培育新品种
是其它动物细胞工程技术的基础
动物细胞培养 液体培养基:动物血清
115、 动 取自动物胚胎或出生不久的幼龄动物的器官或组织
物 用胰蛋白酶处理
细 原代培养→传代培养(细胞株→细胞系 遗传物质发生改变)
胞 灭活的病毒做诱导剂+物理、化学方法
工 动物细胞融合 最重要用途:制备单克隆抗体
程 理论基础:细胞膜的流动性
单克隆抗体→指单个B淋巴细胞经克隆形成的细胞群产生的化学性质单一、特异性强的抗体(优点:特异性强、灵敏度高)。每一个B淋巴细胞只分泌一种特异性抗体(共百万种) *杂交瘤细胞 *生物导弹
116、微生物包含了除植物界和动物界以外的所有生物
质粒(小型环状DNA)控制抗药性、固氮、抗生素生成
核区(大型环状DNA)控制主要遗传性状 有的细菌有荚膜、芽孢、鞭毛
碳源:无机/有机碳源 自养/异养
117、 微生物生长 氮源:加不加额外的氮源
所需的营养物质 生长因子:(维生素、氨基酸、碱基→构成酶和核酸)
水:
无机盐:
固体培养基:分离、鉴定、计数
物理性质 半固体培养基:运动、保藏菌种
液体培养基:工业生产
118、培养基 天然培养基:工业生产
化学性质 合成培养基:分类鉴定
选择培养基 青霉素→选出酵母菌、霉菌等真菌
用途 NaCl:金黄色葡萄球菌
鉴定培养基:伊红美蓝→大肠杆菌→深紫色和金属光泽
自己设计实验:把混合在一起的圆褐固氮菌、硝化细菌、大肠杆菌区分开,并筛选纯种。


酶合成的调节 诱导酶:基因和诱导物控制
119、微生物代谢调节 酶活性的调节 结构改变 可逆 快速 准确
必需物质,一直产生 氨基酸、核苷酸、维生素
初级代谢产物 无种的特异性 多糖、脂类
120、代谢产物 非必需物质,一定阶段 抗生素、毒素
次级代谢产物 有种的特异性 四素 色素、激素
121、微生物群体生长曲线: 3


2 4
1

(1)调整期:代谢活跃,开始合成诱导酶 初级代谢产物收获的最佳时期
(2)对数期:形态和生理特性稳定,代谢旺盛;科研用菌种,接种最佳时期
(3)稳定期:次级代谢产物收获最佳时期,芽孢生成(种内斗争最剧烈)
及时补充营养物质,可以延长稳定期
(4)衰亡期:多种形态,出现畸形,释放次级代谢产物 生存环境恶劣
与无机环境斗争最激烈的是4衰亡期。
营养物质消耗有害代谢产物积累PH不适宜导致3.4时期的出现。
注意:前三个时期类似“S”型增长曲线,但是多了衰亡期
122、影响微生物生活的环境因素
PH值:影响酶的活性、细胞膜的稳定性,从而影响微生物对营养物质的吸收
温度:影响酶和蛋白质的活性
O2浓度:产甲烷杆菌
123、高压蒸汽灭菌法:1/5、1/2、2/3、75% 由里向外、细密、不重复
溶化后分装前必须要 调节pH
细菌培养的过程:培养基的配制→灭菌→搁置斜面→接种→培养观察
实例:谷氨酸发酵(黄色短杆菌、谷氨酸棒状杆菌)
概念:
菌种选育:诱变育种、基因工程、细胞工程
培养基的配制:成分、比例,pH适宜
124、发酵工程 内容 灭菌:去除杂菌
扩大培养和接种:菌种多次培养达到一定数量
发酵过程:(中心阶段)控制各种条件,生产发酵产品
分离提纯 菌体:过滤、沉淀(单细胞蛋白即微生物菌体本身)
代谢产物:蒸馏、萃取、离子交换
应用 医药工业:生产药品和基因工程药品
食品工业:传统发酵产品、食品添加剂、单细胞蛋白等
125、 C/N=4/1 菌体大量繁殖但产生的谷氨酸少(P79)
记住 C/N=3/1 菌体繁殖受抑制,但谷氨酸的合成量大增
溶氧不足: 产生乳酸或琥珀酸
pH呈酸性: 产生乙酰谷氨酰胺(P95)
专家提供:


离子交换法富集分离阳离子和阴离子的原理各是什么

主要利用阴阳离子在树脂上的吸附与解吸附来完成的,比如阴离子树脂用于有机酸的富集,而阳离子用于生物碱的富集。当有机酸的阴离子与阴离子上的羟基负离子交换时被吸附,用酸水去洗脱,把有机酸阴离子置换下来,而达到富集效果。生物碱原理也一样,其他成分先区分不同物质的性质来设计富集的方法


阳离子交换膜的原理是什么

离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。

阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为
2R—SO3H+Ca2+ (R—SO3)2Ca+2H+

这也是硬水软化的原理。

阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为

R—N(CH3)3OH+Cl- R—N(CH3)3Cl+OH-

由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。

离子交换树脂的用途很广,主要用于分离和提纯。例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。


离子交换膜的原理

离子交换树脂是一类具有离子交换功能的高分子材料。在溶液中它能将本身的离子与溶液中的同号离子进行交换。按交换基团性质的不同,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。

阳离子交换树脂大都含有磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行交换。例如苯乙烯和二乙烯苯的高聚物经磺化处理得到强酸性阳离子交换树脂,其结构式可简单表示为R—SO3H,式中R代表树脂母体,其交换原理为
2R—SO3H+Ca2+ (R—SO3)2Ca+2H+

这也是硬水软化的原理。

阴离子交换树脂含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亚胺基(—NH2)等碱性基团。它们在水中能生成OH-离子,可与各种阴离子起交换作用,其交换原理为

R—N(CH3)3OH+Cl- R—N(CH3)3Cl+OH-

由于离子交换作用是可逆的,因此用过的离子交换树脂一般用适当浓度的无机酸或碱进行洗涤,可恢复到原状态而重复使用,这一过程称为再生。阳离子交换树脂可用稀盐酸、稀硫酸等溶液淋洗;阴离子交换树脂可用氢氧化钠等溶液处理,进行再生。

离子交换树脂的用途很广,主要用于分离和提纯。例如用于硬水软化和制取去离子水、回收工业废水中的金属、分离稀有金属和贵金属、分离和提纯抗生素等。


离子交换膜基本原理及应用的介绍

《离子交换膜基本原理及应用》是一本书籍,该书全面系统地介绍了离子交换膜的制备、性能测定及其应用。全书分为基本原理卷和应用卷,内容新颖、翔实。基本原理卷部分概念清晰,图文并茂,易于理解;应用卷借助大量已成功应用的工业规模化的实例,介绍了离子交换膜特别是双极膜的应用。

离子交换膜与反渗透膜的区别,它们各自的机理是什么?

反渗透膜是在压力的作用下,将溶剂和溶质分离的一种方法,该方法类似于过滤
由于反渗透膜孔径只有0.1纳米,所以一般只有水分子才能通过
离子交换膜分阴膜和阳膜,是在电压的作用下,分别将水里的阴阳离子聚集在膜上,通过电化学反应,最后通过浓水室排出
总之,反渗透膜是纯物理方式处理水,而离子交换膜则是通过电化学方法处理


离子交换膜的原理是什么?

离子交换膜又称离子选择透过性膜。
  按其功能和结构的不同,可分为阳离子交换膜、阴离子交换膜、两性交换膜、镶嵌离子交换膜、聚电解质复合膜5种。离子交换膜的构造和离子交换树脂相同,但为膜的形式。
  离子交换膜可制成均相膜和非均相膜两类。采用高分子的加工成型方法制造。①均相膜。先用高分子材料如丁苯橡胶、纤维素衍生物、聚四氟乙烯、聚三氟氯乙烯、聚偏二氟乙烯、聚丙烯腈等制成膜,然后引入单体如苯乙烯、甲基丙烯酸甲酯等,在膜内聚合成高分子,再通过化学反应引入所需功能基。也可通过甲醛、苯酚等单体聚合制得。②非均相膜。用粒度为200~400目的离子交换树脂和普通成膜性高分子材料如聚苯乙烯、聚氯乙烯等充分混合后加工成膜制得。为免失水干燥而变脆破裂,须保存在水中。
  离子交换膜主要应用于海水淡化,甘油、聚乙二醇的除盐,放射性元素、同位素及氨基酸的分离,有机物及无机物纯化,放射性废液处理,燃料电池隔膜及选择性电极等。


离子交换混床结构 工作原理 讲讲 详细 在什么情况下回楼树脂 另在附一张 混床结构图

混床么实际就是里面装满了阴阳树脂的圆柱形容器,柱身有玻璃钢、不锈钢、碳钢等材质,混床是混合离子交换柱的简称。装填方式都是上阴下阳,最底层是排水帽。
混床一般适用于反渗透后面,当然现在有取代混床的EDI装置,也可以为了更好效果,装在EDI后面,或直接应用于含盐量较低的水。离子交换是一种特殊的固体吸附过程,它是由离子交换剂的电解质溶液中进行的。混床为深度脱盐设备,用于制造高纯水,产水电阻率为10-18MΩ?CM(25C),及使出水水质PH值接近中性。
阳树脂有酸箱、酸泵再生系统,阴树脂配备有碱箱、碱泵再生系统。反洗时候上进碱,下进酸,中间排放。排放时候防止树脂露出就用不锈钢筛网或者其他网状物。
漏树脂么你要看是哪里漏的,下面漏么证明排水帽老化或者松动了,如果是反洗时候从中排漏的话么证明筛网网眼太大。


离子交换柱层析原理是什么?

离子的半径电荷等差异会影响它在离子交换柱上的移动速度,进而实现层析。


离子交换柱交换过程化学方程式

强酸型阳离子交换树脂:R-SO3H (有许多SO3H基团)
强碱型阴离子交换树脂:[R4N]OH (有许多OH基团)
R-SO3H + M(+) = RSO3M + H(+) 将所有阳离子吸附到树脂上,释放出H(+);
[R4N]OH + X(-) = [R4N]X + OH(-) 将所有阴离子吸附到树脂上,释放出OH(-);
H(+) + OH(-) = H2O 阳离子交换产生的H(+)与阴离子交换产生的OH(-)结合成水。


离子交换色谱法的分离原理

离子交换色谱(ion exchange chromatography,IEC)以离子交换树脂作为固定相,树脂上具有固定离子基团及可交换的离子基团。当流动相带着组分电离生成的离子通过固定相时,组分离子与树脂上可交换的离子基团进行可逆变换。根据组分离子对树脂亲合力不同而得到分离。阳离子交换:阴离子交换:式中"--"表示在固定相上,Kxy和Kzm是交换反应的平衡常数,Z+和X-代表被分析的组分离子。M+和Y-表示树脂上可交换的离子团。离子交换反应的平衡常数分别为:阳离子交换:阴离子交换:平衡常数K值越大,表示组分的离子与离子交换树脂的相互作用越强。由于不同的物质在溶剂中离解后,对离子交换中心具有不同的亲合力,因此具有不同的平衡常数。亲合力大的,在柱中的停留时间长,具有高的保留值。

什么是抛光树脂?抛光混床的工作原理?

超纯水抛光混床树脂的作用:抛光混床树脂可以通过离子置换的形式去除水中除除氢氧离子外的其他离子,但是超纯水树脂吸附作用也是有一定的顺序的,首先是通过阳离子去除水中的杂质和钙镁离子,然后阴离子树脂降低电导率。主要是作用于锅炉及半导体行业比较多。 特别是一些对于水质纯度要求很高,需要达到超纯水标准的,就必须要使用超纯水树脂。超纯水树脂可以让产水达到18兆欧,符合超高纯水的标准。 抛光混床树脂的原理:将阳、阴离子交换树脂放在同一个交换床,并在运行前混合均匀。混床就是由很多阳、阴离子交换树脂组合成的多级式复床。在混床中,阳、阴树脂是相互混合均匀的,所以阳、阴离子交换反应几乎是同时进行的。或者说水的阳离子交换和阴离子交换是多次交换进行的。即经H型阳离子交换所产生的H+和经OH型离子交换所产生的OH一不能积累起来,会立即生成离解度很低的水。这样就基本上消除了反离子的影响,离子交换反应可以进行得很彻底,所以混床的出水质量很高。

离子交换柱的工作原理

离子交换柱的工作原理:
采用离子交换方法,可以把水中呈离子态的阳、阴离子去除。
以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:
1、阳离子交换树脂:R—H+Na+→R-Na+H+
2、阴离子交换树脂:R—OH+CL-→R-CL+OH+
阳、阴离子交换树脂总的反应式即可写成:
RH+ROH+NaCL—RNa+RCL+H2O
由此可看出,水中的Nacl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。
离子交换柱(ion exchange column)是用来进行离子交换反应的柱状压力容器。充填有离子交换树脂的细长管柱。可由玻璃、不锈钢、有机玻璃等不被所用的流动相腐蚀的材料制成。离子交换柱(混床)的分类:混床按再生方式分可分为体内再生混床、体外再生混床、阴树脂外移再生混床三种。
离子交换柱的分类:
混床按再生方式分可分为体内再生混床、体外再生混床、阴树脂外移再生混床三种。
1、体外再生混床适合小流量、对环保有严格要求的企业。但由于体外再生式混床配套设备多,操作复杂,现在已很少使用。
2、体内再生混床和阴树脂外移再生混床适合大流量,有专门的水处理操作人员及废水处理的场合。体内再生混床在运行及整个再生过程均在混床内进行,再生时树脂不移出设备以外,且阳、阴树脂同时再生,因此所需附属设备少,操作简便。
3、阴树脂外移再生混床:阴树脂外移再生式混合床及其配套的阴树脂再生柱基本构造与小型逆流再生固定床大致相同,阴树脂再生柱厚度较混合床小,所需的膨胀高度为树脂层高度的50%~60%,故再生柱可较低,但一般为统一起见做成与混合床相同。


聚丙烯离子交换柱原理是什么?

离子交换柱主要是利用离子交换树脂中的离子同原水(液体)中的钙、镁及铁离子进行交换而将其去除,使水(液体)得到净化。佳庆聚丙烯离子交换柱工作原理是让交换树脂中的离子同原水中的某些离子进行交换而将其除去,从而使水得到软化。


离子交换器参数的工作原理是什么?

工作原理就是离子的交换。运行时:阳树脂 (h-r) (m ) --> :(m-r) (h )阴树脂 (oh-r) (x-) --> :(x-r) (oh-)其中m 为金属离子,x-为阴离子。再生过程为其逆过程。


离子交换柱的工作原理是什么?

离子交换柱的原理   采用离子交换方法,可以把水中呈离子态的阳、阴离子去除,以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应可以用下列方程式表达:   1、阳离子交换树脂:R—H+Na+→R-Na+H+   2、阴离子交换树脂:R—OH+CL-→R-CL+OH+   阳、阴离子交换树脂总的反应式即可写成:   RH+ROH+NaCL—RNa+RCL+H2O   由此可看出,水中的Nacl已分别被树脂上的H+和OH-所取代,而反应生成物只有H2O,故达到了去除水中盐的作用。   3、混合离子交换柱(混床):混床是装阳、阴树脂按一定比例(一般为1:2,以便阳、阴树脂同时达到交换终点而同时再生)装入混合柱而成,实际上它组合成了水中的H+和OH-立即生成电离度很小的水分子(H2O),几乎不存在阳床或阴床交换时产生的逆交换现象,故可以使交换反应进行得十分彻底,因而混合床的出水水质优于阳、阴床串联组成的复床所能达到的水质,能制取纯度相当高的成品水。

离子交换的原理

有两种理论可用于研究交换过程的选择性:① 多相化学反应理论假定离子A1与A2之间有如下的交换反应:式中Z1和Z2分别为离子A1和A2的化合价;A1和A2表示存在于溶液相中的离子;凴1和凴2表示存在于树脂相中的离子。以离子浓度C代替活度,依据质量作用定律,可得出离子交换平衡常数为: 式中C1、C2、叿1和叿2分别为A1、A2、凴1和凴2的离子浓度。此常数又称选择性系数。②膜平衡理论 认为树脂表面相当于半透膜, 所交换的离子能自由通过;而连接在树脂骨架上的离子不能通过。按照F.G.唐南膜平衡原理,可得出格雷戈尔公式:式中R为摩尔气体常数;T为绝对温度;α1、α2、ā1和ā2分别为离子A1、A2、凴1和凴2的活度;π为渗透压;堸为位于树脂相的离子的偏摩尔体积。由上式可以看出,化合价较高、体积较小(即水化半径较小)的离子,将优先与树脂结合。因此,溶液中各种离子的化合价及体积相差越大,离子交换过程的选择性越高。 离子交换是一种液固相反应过程,必然涉及物质在液相和固相中的扩散过程。在常温下,交换反应的速度很快,不是控制因素。如果进行交换的离子在液相中的扩散速度较慢,称为外扩散控制,如果在固相中的扩散较慢,则称为内扩散控制。早期的研究系从斐克定律(见分子扩散)出发,所导出的速率方程式只适用于同位素离子的交换。实际上,离子交换过程至少有两种离子反向扩散。如果它们的扩散速率不等,就会产生电场,此电场必对离子的扩散产生影响。考虑到此电场的影响,F.G.赫尔弗里希导出相应的速率方程为:式中N为物质通量;D为扩散系数;F为法拉第常数;φ为电极电位。

离子交换法原理

采用碱性阴离子交换树脂,A-Cl + I- =A-I + Cl-。离子交换法一般应用于生化产品的制备、纯水的制备等。原理:根据目的物与杂质在不同pH下所带电荷的不同选择相应的离子交换树脂。你的实验是提取碘,在溶液中,碘离子带负电荷,那么就要选择阴离子交换树脂,要么强碱性,要么弱碱性,如果原液ph>9,就必须用强碱性树脂,在9以下,强碱弱碱都可以。你可以都试试。碘酸属于中强酸,优先选择弱碱性阳离子交换树脂。


离子交换原理?

借助于固体离子交换剂中的离子与稀溶液中的离子进行交换,以达到提取或去除溶液中某些离子的目的,是一种属于传质分离过程的单元操作。离子交换是可逆的等当量交换反应。


点击展开全文

大家都在看

推荐信息

猜你喜欢

新鲜事

热门阅读

娱乐新闻

精彩专题

美白方法 自制面膜 去黑头 秋冬护肤 明星护肤 男士护肤 收缩毛孔 皮肤过敏 颈部护理 唇部保养 眼部护理 洁面 黑眼圈 去眼袋 如何保湿 补水方法 去角质 爽肤水 去粉刺 去皱方法 抗衰老 SPA 如何祛斑 祛痘方法 去痘印 控油 油性肌肤 紧肤 美容食品 珍珠粉 洗面奶 防晒霜 面霜乳液 胶原蛋白 美黑 红血丝 皮肤干燥 痤疮疤痕 手部护理